1,340 research outputs found

    Magnetic field generation in relativistic shocks - An early end of the exponential Weibel instability in electron-proton plasmas

    Get PDF
    We discuss magnetic field generation by the proton Weibel instability in relativistic shocks, a situation that applies to the external shocks in the fireball model for Gamma-ray Bursts, and possibly also to internal shocks. Our analytical estimates show that the linear phase of the instability ends well before it has converted a significant fraction of the energy in the proton beam into magnetic energy: the conversion efficiency is much smaller (of order m_e/m_p) in electron-proton plasmas than in pair plasmas. We find this estimate by modelling the plasma in the shock transition zone with a waterbag momentum distribution for the protons and with a background of hot electrons. For ultra-relativistic shocks we find that the wavelength of the most efficient mode for magnetic field generation equals the electron skin depth, that the relevant nonlinear stabilization mechanism is magnetic trapping, and that the presence of the hot electrons limits the typical magnetic field strength generated by this mode so that it does not depend on the energy content of the protons. We conclude that other processes than the linear Weibel instability must convert the free energy of the protons into magnetic fields.Comment: 7 pages, 3 figures, accepted for publication in A&

    Evolution of Magnetic Fields in Supernova Remnants

    Full text link
    Supernova remnants (SNR) are now widely believed to be a source of cosmic rays (CRs) up to an energy of 1 PeV. The magnetic fields required to accelerate CRs to sufficiently high energies need to be much higher than can result from compression of the circumstellar medium (CSM) by a factor 4, as is the case in strong shocks. Non-thermal synchrotron maps of these regions indicate that indeed the magnetic field is much stronger, and for young SNRs has a dominant radial component while for old SNRs it is mainly toroidal. How these magnetic fields get enhanced, or why the field orientation is mainly radial for young remnants, is not yet fully understood. We use an adaptive mesh refinement MHD code, AMRVAC, to simulate the evolution of supernova remnants and to see if we can reproduce a mainly radial magnetic field in early stages of evolution. We follow the evolution of the SNR with three different configurations of the initial magnetic field in the CSM: an initially mainly toroidal field, a turbulent magnetic field, and a field parallel to the symmetry axis. Although for the latter two topologies a significant radial field component arises at the contact discontinuity due to the Rayleigh-Taylor instability, no radial component can be seen out to the forward shock. Ideal MHD appears not sufficient to explain observations. Possibly a higher compression ratio and additional turbulence due to dominant presence of CRs can help us to better reproduce the observations in future studies.Comment: 5 pages, 3 figures. To appear in conference proceedings of "Magnetic Fields in the Universe II" (2008), RevMexA

    Jets as diagnostics of the circumstellar medium and the explosion energetics of supernovae: the case of Cas A

    Full text link
    We present hydrodynamical models for the Cassiopeia A (Cas A) supernova remnant and its observed jet / counter-jet system. We include the evolution of the progenitor's circumstellar medium, which is shaped by a slow red supergiant wind that is followed by a fast Wolf-Rayet (WR) wind. The main parameters of the simulations are the duration of the WR phase and the jet energy. We find that the jet is destroyed if the WR phase is sufficiently long and a massive circumstellar shell has formed. We therefore conclude that the WR phase must have been short (a few thousand yr), if present at all. Since the actual jet length of Cas A is not known we derive a lower limit for the jet energy, which is ~10^{48} erg. We discuss the implications for the progenitor of Cas A and the nature of its explosion.Comment: 9 pages, 5 figures, ApJ accepted. Version with high resolution figures available at http://www.phys.uu.nl/~schure/CasA_jet.pd

    Magnetic field generation in relativistic shocks

    Get PDF
    Linear theory of the Weibel instability cannot explain magnetic field generation in relativistic shock fronts in electron-proton plasmas. The fireball model for Gamma-ray Burst afterglows requires a magnetic field in similar shock fronts between the fireball and the surrounding matter to explain the detected nonthermal afterglow radiation. We consider an analytical model of pre-shock protons penetrating the hot post-shock electron plasma. The linear Weibel instability produces magnetic fields through self-enhancing current channels. Perturbations with a length-scale comparable to the electron skin depth reach the highest magnetic field before the linear theory breaks down. The electrons quench the linear proton instability so that it cannot randomize the proton velocity distribution and only converts a small fraction of the available kinetic energy of the protons into magnetic fields. We conclude that the linear Weibel instability that dominates in pair plasmas is relatively unimportant in electron-proton plasmas and that non-linear processes are probably much more important

    Cosmic-ray energy spectrum and composition up to the ankle - the case for a second Galactic component

    Get PDF
    We have carried out a detailed study to understand the observed energy spectrum and composition of cosmic rays with energies up to ~10^18 eV. Our study shows that a single Galactic component with subsequent energy cut-offs in the individual spectra of different elements, optimised to explain the observed spectra below ~10^14 eV and the knee in the all-particle spectrum, cannot explain the observed all-particle spectrum above ~2x10^16 eV. We discuss two approaches for a second component of Galactic cosmic rays -- re-acceleration at a Galactic wind termination shock, and supernova explosions of Wolf-Rayet stars, and show that the latter scenario can explain almost all observed features in the all-particle spectrum and the composition up to ~10^18 eV, when combined with a canonical extra-galactic spectrum expected from strong radio galaxies or a source population with similar cosmological evolution. In this two-component Galactic model, the knee at ~ 3x10^15 eV and the second knee at ~10^17 eV in the all-particle spectrum are due to the cut-offs in the first and second components, respectively. We also discuss several variations of the extra-galactic component, from a minimal contribution to scenarios with a significant component below the ankle (at ~4x10^18 eV), and find that extra-galactic contributions in excess of regular source evolution are neither indicated nor in conflict with the existing data. Our main result is that the second Galactic component predicts a composition of Galactic cosmic rays at and above the second knee that largely consists of helium or a mixture of helium and CNO nuclei, with a weak or essentially vanishing iron fraction, in contrast to most common assumptions. This prediction is in agreement with new measurements from LOFAR and the Pierre Auger Observatory which indicate a strong light component and a rather low iron fraction between ~10^17 and 10^18 eV.Comment: Added Table 4; Published in A&A, 595 (2016) A33 (Highlight paper

    Particle acceleration at ultrarelativistic shocks: an eigenfunction method

    Get PDF
    We extend the eigenfunction method of computing the power-law spectrum of particles accelerated at a relativistic shock fronts to apply to shocks of arbitrarily high Lorentz factor. In agreement with the findings of Monte-Carlo simulations, we find the index of the power-law distribution of accelerated particles which undergo isotropic diffusion in angle at an ultrarelativistic, unmagnetized shock is s=4.23 (where s=-d(ln f)/dp with f the Lorentz invariant phase-space density and p the momentum). This corresponds to a synchrotron index for uncooled electrons of a=0.62 (taking cooling into account a=1.12), where a=-d(ln F)/dn, F is the radiation flux and n the frequency. We also present an approximate analytic expression for the angular distribution of accelerated particles, which displays the effect of particle trapping by the shock: compared with the non-relativistic case the angular distribution is weighted more towards the plane of the shock and away from its normal. We investigate the sensitivity of our results to the transport properties of the particles and the presence of a magnetic field. Shocks in which the ratio of Poynting to kinetic energy flux upstream is not small are less compressive and lead to larger values of ss.Comment: Minor additions on publicatio

    On the Structure and Scale of Cosmic Ray Modified Shocks

    Full text link
    Strong astrophysical shocks, diffusively accelerating cosmic rays (CR) ought to develop CR precursors. The length of such precursor LpL_{p} is believed to be set by the ratio of the CR mean free path λ\lambda to the shock speed, i.e., Lpcλ/Vshcrg/VshL_{p}\sim c\lambda/V_{sh}\sim cr_{g}/V_{sh}, which is formally independent of the CR pressure PcP_{c}. However, the X-ray observations of supernova remnant shocks suggest that the precursor scale may be significantly shorter than LpL_{p} which would question the above estimate unless the magnetic field is strongly amplified and the gyroradius rgr_{g} is strongly reduced over a short (unresolved) spatial scale. We argue that while the CR pressure builds up ahead of the shock, the acceleration enters into a strongly nonlinear phase in which an acoustic instability, driven by the CR pressure gradient, dominates other instabilities (at least in the case of low β\beta plasma). In this regime the precursor steepens into a strongly nonlinear front whose size scales with \emph{the CR pressure}as LfLp(Ls/Lp)2(Pc/Pg)2L_{f}\sim L_{p}\cdot(L_{s}/L_{p})^{2}(P_{c}/P_{g})^{2}, where LsL_{s} is the scale of the developed acoustic turbulence, and Pc/PgP_{c}/P_{g} is the ratio of CR to gas pressure. Since LsLpL_{s}\ll L_{p}, the precursor scale reduction may be strong in the case of even a moderate gas heating by the CRs through the acoustic and (possibly also) the other instabilities driven by the CRs.Comment: EPS 2010 paper, to appear in PPC

    Induced Scattering and Two-Photon Absorption of Alfven Waves with Arbitrary Propagation Angles

    Full text link
    The equation for temporary evolution of spectral energy of collisionless Alfven waves is derived in framework of weak turbulence theory. The main nonlinear processes for such conditions are induced scattering and two quantum absorption of Alfven waves by thermal ions. The equation for velocity distribution of thermal particles is derived that describes diffusion in momentum space due to this nonlinear processes. Comparison is done with the results of another authors. Results obtained are qualitatively differ from the ones obtained for the case of Alfven waves propagation along mean magnetic field.Comment: 8 page
    corecore